Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 9(9): 1468-1480, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37591928

RESUMEN

Although many studies have shown that microbes can ectopically stimulate or suppress plant immune responses, the fundamental question of whether the entire preexisting microbiota is indeed required for proper development of plant immune response remains unanswered. Using a recently developed peat-based gnotobiotic plant growth system, we found that Arabidopsis grown in the absence of a natural microbiota lacked age-dependent maturation of plant immune response and were defective in several aspects of pattern-triggered immunity. Axenic plants exhibited hypersusceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea. Microbiota-mediated immunocompetence was suppressed by rich nutrient conditions, indicating a tripartite interaction between the host, microbiota and abiotic environment. A synthetic microbiota composed of 48 culturable bacterial strains from the leaf endosphere of healthy Arabidopsis plants was able to substantially restore immunocompetence similar to plants inoculated with a soil-derived community. In contrast, a 52-member dysbiotic synthetic leaf microbiota overstimulated the immune transcriptome. Together, these results provide evidence for a causal role of a eubiotic microbiota in gating proper immunocompetence and age-dependent immunity in plants.


Asunto(s)
Arabidopsis , Microbiota , Estado de Salud , Inmunocompetencia , Reconocimiento de Inmunidad Innata , Suelo
2.
Annu Rev Plant Biol ; 74: 539-568, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36854478

RESUMEN

The aboveground parts of terrestrial plants are colonized by a variety of microbes that collectively constitute the phyllosphere microbiota. Decades of pioneering work using individual phyllosphere microbes, including commensals and pathogens, have provided foundational knowledge about how individual microbes adapt to the phyllosphere environment and their role in providing biological control against pathogens. Recent studies have revealed a more complete repertoire of phyllosphere microbiota across plant taxa and how plants respond to and regulate the level and composition of phyllosphere microbiota. Importantly, the development of several gnotobiotic systems is allowing causative and mechanistic studies to determine the contributions of microbiota to phyllosphere health and productivity. New insights into how the phyllosphere carries out key biological processes, including photosynthesis, biomass accumulation, reproduction, and defense against biotic and abiotic insults, in either the presence or absence of a normal microbiota could unleash novel plant- and microbiota-based technologies to improve agriculturally relevant traits of crop plants.


Asunto(s)
Microbiota , Microbiota/fisiología , Plantas , Fenotipo , Hojas de la Planta
3.
Nature ; 607(7918): 339-344, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768511

RESUMEN

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Ambiente , Calentamiento Global , Inmunidad de la Planta , Temperatura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Calentamiento Global/estadística & datos numéricos , Interacciones Huésped-Patógeno , Fitocromo B , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo , Factores de Transcripción
4.
Nat Plants ; 7(5): 644-654, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972713

RESUMEN

Maintaining microbiome structure is critical for the health of both plants and animals. By re-screening a collection of Arabidopsis mutants affecting root immunity and hormone crosstalk, we identified a FERONIA (FER) receptor kinase mutant (fer-8) with a rhizosphere microbiome enriched in Pseudomonas fluorescens without phylum-level dysbiosis. Using microbiome transplant experiments, we found that the fer-8 microbiome was beneficial. The effect of FER on rhizosphere pseudomonads was largely independent of its immune scaffold function, role in development and jasmonic acid autoimmunity. We found that the fer-8 mutant has reduced basal levels of reactive oxygen species (ROS) in roots and that mutants deficient in NADPH oxidase showed elevated rhizosphere pseudomonads. The addition of RALF23 peptides, a FER ligand, was sufficient to enrich P. fluorescens. This work shows that FER-mediated ROS production regulates levels of beneficial pseudomonads in the rhizosphere microbiome.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Fosfotransferasas/fisiología , Pseudomonas fluorescens/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rizosfera , Microbiología del Suelo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfotransferasas/metabolismo , Pseudomonadaceae/metabolismo , Pseudomonadaceae/fisiología , Pseudomonas fluorescens/fisiología
5.
Nat Protoc ; 16(5): 2450-2470, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33911260

RESUMEN

The complex structure and function of a plant microbiome are driven by many variables, including the environment, microbe-microbe interactions and host factors. Likewise, resident microbiota can influence many host phenotypes. Gnotobiotic growth systems and controlled environments empower researchers to isolate these variables, and standardized methods equip a global research community to harmonize protocols, replicate experiments and collaborate broadly. We developed two easily constructed peat-based gnotobiotic growth platforms: the FlowPot system and the GnotoPot system. Sterile peat is amenable to colonization by microbiota and supports growth of the model plant Arabidopsis thaliana in the presence or absence of microorganisms. The FlowPot system uniquely allows one to flush the substrate with water, nutrients and/or suspensions of microbiota via an irrigation port, and a mesh retainer allows for the inversion of plants for dip or vacuum infiltration protocols. The irrigation port also facilitates passive drainage, preventing root anoxia. In contrast, the GnotoPot system utilizes a compressed peat pellet, widely used in the horticultural industry. GnotoPot construction has fewer steps and requires less user handling, thereby reducing the risk of contamination. Both protocols take up to 4 d to complete with 4-5 h of hands-on time, including substrate and seed sterilization. In this protocol, we provide detailed assembly and inoculation procedures for the two systems. Both systems are modular, do not require a sterile growth chamber, and cost less than US$2 per vessel.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Técnicas de Cultivo/métodos , Microbiota , Suelo/química , Vida Libre de Gérmenes , Industrias
6.
Nature ; 580(7805): 653-657, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32350464

RESUMEN

The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


Asunto(s)
Arabidopsis/genética , Arabidopsis/microbiología , Redes Reguladoras de Genes/genética , Componentes Aéreos de las Plantas/genética , Componentes Aéreos de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Ambiente , Firmicutes/genética , Firmicutes/aislamiento & purificación , Genes de Plantas/genética , Genotipo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Homeostasis , Microbiota/genética , Microbiota/fisiología , Mutación , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteobacteria/genética , Proteobacteria/aislamiento & purificación
7.
Plant Signal Behav ; 12(1): e1265722, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918234

RESUMEN

Triterpenoids produced by plants play important roles in the protection against biotic stress. Roots of Arabidopsis thaliana produce different triterpenoids, which include the tricyclic triterpene diol, arabidiol. In a degradation reaction induced by infection with the oomycete pathogen, Pythium irregulare, arabidiol is cleaved to the 11-carbon volatile homoterpene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and the 19-carbon ketone, apo-arabidiol. The arabidiol pathway and its volatile breakdown product DMNT have been implicated in the defense against P. irregulare infection. Here we show that the non-volatile breakdown product apo-arabidiol is further converted to the acetylated derivative α-14-acetyl-apo-arabidiol via a presumed epimerization and subsequent acetylation reaction. α-14-acetyl-apo-arabidiol and the detected intermediates in the derivatization pathway are partially exuded from the root indicating possible defensive activities of these molecules in the rhizosphere. The conversion steps of apo-arabidiol vary among different Arabidopsis accessions and are present in only rudimentary form in the close relative Arabidopsis lyrata, which supports an intra- and inter-specific modularity in triterpenoid metabolism.


Asunto(s)
Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Triterpenos/metabolismo , Alquenos/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Compuestos Orgánicos Volátiles/metabolismo
8.
Plant Cell ; 27(3): 874-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25724638

RESUMEN

Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Vías Biosintéticas , Raíces de Plantas/metabolismo , Terpenos/metabolismo , Triterpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Arabidopsis/genética , Cromatografía de Gases , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Especificidad de Órganos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Pythium/crecimiento & desarrollo , Pythium/fisiología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Triterpenos/química
9.
Methods Mol Biol ; 1153: 149-59, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24777795

RESUMEN

Terpene specialized metabolites exhibit multiple functions in plant-environment interactions and plant development. Molecular biologists investigating the biochemistry and molecular function of terpenes need to apply robust but yet sensitive analytical methods optimized and adapted to the structural diversity and often varying concentrations of terpene compounds in plant tissues. Here we present hands-on protocols for sample preparation and GC-MS or LC-MS/MS analysis of selected diterpene and triterpene hydrocarbons or oxygenated derivatives from roots and shoots of Arabidopsis and rice.


Asunto(s)
Arabidopsis/química , Diterpenos/análisis , Oryza/química , Hojas de la Planta/química , Raíces de Plantas/química , Triterpenos/análisis , Diterpenos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida , Triterpenos/aislamiento & purificación
10.
New Phytol ; 193(4): 997-1008, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22187939

RESUMEN

Flowers have a high risk of pathogen attack because of their rich nutrient and moisture content, and high frequency of insect visitors. We investigated the role of (E)-ß-caryophyllene in floral defense against a microbial pathogen. This sesquiterpene is a common volatile compound emitted from flowers, and is a major volatile released from the stigma of Arabidopsis thaliana flowers. Arabidopsis thaliana lines lacking a functional (E)-ß-caryophyllene synthase or constitutively overexpressing this gene were challenged with Pseudomonas syringae pv. tomato DC3000, which is a bacterial pathogen of brassicaceous plants. Flowers of plant lines lacking (E)-ß-caryophyllene emission showed greater bacterial growth on their stigmas than did wild-type flowers, and their seeds were lighter and misshapen. By contrast, plant lines with ectopic (E)-ß-caryophyllene emission from vegetative parts were more resistant than wild-type plants to pathogen infection of leaves, and showed reduced cell damage and higher seed production. Based on in vitro experiments, (E)-ß-caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering defense signaling pathways. (E)-ß-Caryophyllene thus appears to serve as a defense against pathogens that invade floral tissues and, like other floral volatiles, may play multiple roles in defense and pollinator attraction.


Asunto(s)
Arabidopsis/microbiología , Arabidopsis/fisiología , Flores/fisiología , Hojas de la Planta/microbiología , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/microbiología , Interacciones Huésped-Patógeno , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Sesquiterpenos Policíclicos , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/patogenicidad , Semillas/metabolismo , Semillas/microbiología , Compuestos Orgánicos Volátiles
11.
Phytochemistry ; 72(13): 1635-46, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21334702

RESUMEN

Volatile organic compounds emitted by plants mediate a variety of interactions between plants and other organisms. The irregular acyclic homoterpenes, 4,8-dimethylnona-1,3,7-triene (DMNT) and 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), are among the most widespread volatiles produced by angiosperms with emissions from flowers and from vegetative tissues upon herbivore feeding. Special attention has been placed on the role of homoterpenes in attracting parasitoids and predators of herbivores and has sparked interest in engineering homoterpene formation to improve biological pest control. The biosynthesis of DMNT and TMTT proceeds in two enzymatic steps: the formation of the tertiary C15₋, and C20₋ alcohols, (E)-nerolidol and (E,E)-geranyl linalool, respectively, catalyzed by terpene synthases, and the subsequent oxidative degradation of both alcohols by a single cytochrome P450 monooxygenase (P450). In Arabidopsis thaliana, the herbivore-induced biosynthesis of TMTT is catalyzed by the concerted activities of the (E,E)-geranyllinalool synthase, AtGES, and CYP82G1, a P450 of the so far uncharacterized plant CYP82 family. TMTT formation is in part controlled at the level of AtGES expression. Co-expression of AtGES with CYP82G1 at wound sites allows for an efficient conversion of the alcohol intermediate. The identified homoterpene biosynthesis genes in Arabidopsis and related genes from other plant species provide tools to engineer homoterpene formation and to address questions of the regulation and specific activities of homoterpenes in plant-herbivore interactions.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/química , Aceites Volátiles/química , Enfermedades de las Plantas , Terpenos/metabolismo , Alquenos/metabolismo , Animales , Arabidopsis/enzimología , Resistencia a la Enfermedad , Expresión Génica , Insectos , Odorantes
12.
Plant Physiol ; 153(3): 1293-310, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20463089

RESUMEN

When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-beta-ocimene, the sesquiterpene (E,E)-alpha-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-beta-ocimene and (E,E)-alpha-farnesene from accession Wassilewskija (Ws), a high-(E)-beta-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-beta-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-beta-ocimene and (E,E)-alpha-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-beta-ocimene/(E,E)-alpha-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Alelos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Conducta Alimentaria , Liasas Intramoleculares/metabolismo , Complejos Multienzimáticos/metabolismo , Pirofosfatasas/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos , Alquenos/química , Alquenos/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Citosol/enzimología , Eritritol/análogos & derivados , Eritritol/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Insectos , Liasas Intramoleculares/química , Liasas Intramoleculares/genética , Redes y Vías Metabólicas , Ácido Mevalónico/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Plastidios/enzimología , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Pirofosfatasas/química , Pirofosfatasas/genética , Proteínas Recombinantes/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Fracciones Subcelulares/enzimología , Fosfatos de Azúcar/metabolismo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...